US 2022/0019516 Al

the group has a unique combination of the software com-
ponents in the search space. The group of software-stack
candidates may be a relatively small subset of the total
number of software-stack combinations that can be gener-
ated using all of the software components in the search
space. For example, the group may include 100 thousand
software-stack candidates, which may be a relatively small
subset of the 10 million total possibilities. In this way, the
system has significantly reduced the amount of software-
stack candidates that will undergo further analysis.

[0010] During or after the search process, the system can
also determine respective scores for the software-stack can-
didates using a scoring function. In some examples, the
scoring function can take into account hardware and soft-
ware characteristics of a computing environment in which
the target software item is to execute. Additionally or
alternatively, the scoring function can take into account
security properties of the software item and each of its
dependencies. Additionally or alternatively, the scoring
function can take into account performance properties of the
software item and each of its dependencies. The scoring
function may also take into account other factors. Using a
scoring function to characterize each of the software-stack
candidates in this way can be faster and less resource-
intensive than building and testing each of the software-
stack candidates to verify application behavior.

[0011] After scoring the software-stack candidates, the
system can select one of the software-stack candidates from
the group as a recommended software-stack based on its
corresponding score. For example, the system can select
whichever software-stack candidate in the group has the
highest score or the lowest score, depending on the scoring
function, as the recommended software-stack. The recom-
mended software-stack may be the best software stack for a
given computing environment relative to the rest of the
software-stack candidates in the group. The system may then
transmit an output indicating the recommended software-
stack to a user, who may choose to install the recommended
software-stack on a computing device.

[0012] Insome examples, the user can provide input to the
system indicating a target software item. The input can also
include one or more characteristics of a computing environ-
ment in which the target software item will be executed. The
system can use those characteristics to determine a respec-
tive score for each of the software-stack candidates, since
the scoring function may take such characteristics into
account (among other factors). The system can then select
the recommended software-stack using one or more pro-
cesses described herein. In this way, the system can deter-
mine a recommended software-stack that is the best for the
computing environment’s specific characteristics, relative to
the other software-stack candidates. The system can then
output the recommended software-stack, to enable the rec-
ommended software-stack to be included (e.g., installed) in
the computing environment.

[0013] These illustrative examples are given to introduce
the reader to the general subject matter discussed here and
are not intended to limit the scope of the disclosed concepts.
The following sections describe various additional features
and examples with reference to the drawings in which like
numerals indicate like elements but, like the illustrative
examples, should not be used to limit the present disclosure.

[0014] FIG. 1 is a block diagram of an example of a
system for determining a recommended software-stack for a

Jan. 20, 2022

software item according to some aspects of the present
disclosure. The system 100 includes a client device 102,
such as a laptop computer, desktop computer, or mobile
device (e.g., smartphone, tablet, or e-reader). The client
device 102 can include a computing environment 104 for a
target software item. Examples of the computing environ-
ment 104 can include a runtime environment or a build-time
environment. The computing environment 104 may have
certain characteristics, such as hardware characteristics 106
and software characteristics 108. Examples of the hardware
characteristics 106 can include the number and types of
processors, non-volatile memory, and volatile-memory sup-
porting the computing environment 104. Examples of the
software characteristics 108 can include the operating sys-
tem and libraries in the computing environment 104.

[0015] In some examples, the client device 102 can trans-
mit a request to a server 112. The request can serve as an
input 110 indicating a target software item and a character-
istic of the computing environment 104 in which the target
software item is to be executed. The input 110 may not
include a version indicator for the target software item, but
may rather refer to the target software item more generally.
The server 112 can receive the input 110 and responsively
perform operations to determine a recommended software-
stack 114 for the target software item. The recommended
software-stack 114 can include a recommended version 116
of the target software item (denoted “TSI Version” in FIG.
1) and one or more recommended dependencies 118 of the
target software item, where such dependencies may be direct
or indirect dependencies of the target software item. The
server 112 can then generate an output 120 indicating the
recommended software-stack 114 and provide the output
120 to the client device 102. A user of the client device 102
may receive the output 120 (e.g., via a display of the client
device 102) and install the recommended software-stack
114. Alternatively, the client device 102 can automatically
install the recommended software-stack 114, in some
examples.

[0016] To determine the recommended software-stack
114, the server 112 can begin by executing a search algo-
rithm 122. The search algorithm 122 can be a heuristic
search algorithm, a stochastic search algorithm, or another
type of search algorithm. The search algorithm 122 can be
executed to recursively analyze direct and indirect depen-
dencies of the target software item to develop a search space
containing various combinations of the target software item
and its dependencies. These combinations may include
different versions of the target software item and different
mixtures and versions of the dependencies. Each element in
the search space can correspond to a unique combination of
a specific version of the target software item and the
dependencies of that version. The search space can then be
searched based on an objective function. In some examples,
the search algorithm 122 can learn over time (e.g., between
iterations) to more rapidly converge towards a solution to the
objective function, without having to analyze every element
in the search space. This can reduce the practical magnitude
of the search space, exponentially reducing the amount of
computational time and resources required to perform the
search. By performing the search, the server 112 can deter-
mine a group of software-stack candidates 124a-n, where
each software-stack candidate 124a-» in the group corre-
sponds to a unique combination of the target software item
and its dependencies.



